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A SIMPLE DIVERSIFIED PORTFOLIO STRATEGY
Bernd Hankea,∗ and Garrett Quigleya,†

We present a simple portfolio construction approach which is a blend of market weights
and equal stock and sector weights. Our approach results in a highly diversified portfolio
both on a stock level and on a sector level and generates higher portfolio returns at
slightly lower risk than a market weighted index. We demonstrate that the higher returns
of our diversified portfolio originate both from mitigating the link with market weights
and from its higher return benefit due to diversification which we are able to capture
because we rebalance our portfolio on a regular basis. Our diversified portfolio is highly
implementable and has very high investment capacity.

1 Background

Over the last few decades market weighted (MW)
indexing has become by far the predominant
investment approach for capturing the broad
equity risk premium. Although it offers low costs
and turnover, high scalability and has histori-
cally enjoyed considerable theoretical backing, in
recent years critics have pointed out significant
drawbacks with MW portfolios.1

In this paper we focus primarily on the issue of
diversification and argue that MW portfolios tend
to be insufficiently diversified both on a stock
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level and on a sector level. As we will demon-
strate, a lack of diversification can lead to lower
portfolio returns. While diversification is most
commonly analyzed in the context of risk reduc-
tion, an additional benefit of diversification is the
return premium it generates for a portfolio that is
rebalanced regularly.

To illustrate the lack of diversification Exhibit 1
shows aggregate stock and sector weights for an
MW portfolio that consists of the 500 largest
stocks in the US (a close approximation to the
widely used S&P 500 index).

The graphs in Exhibit 1 show that market weights
are very concentrated in mega-cap stocks. The
top-10 stocks in terms of market weights (i.e. just
2% of the number of companies) have an aver-
age aggregate market weight of almost 20% over
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Exhibit 1 Top-500 market weighted US stocks—aggregate stock weights and GICS sector weights.
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our sample period from 1992 to 2013. Moreover,
company membership in the top-10 list tends to
change substantially over time which casts doubt
on whether these companies should get such a
high portfolio weight.2

Similarly, Global Industry Classification Stan-
dard (GICS) sector market weights are at times
highly skewed towards certain individual sectors
such as Information Technology during the tech-
nology boom at the end of the 1990s. At the time
more than one third of the entire US market cap-
italization was concentrated in this single sector.
Hence MW portfolios tend to be insufficiently
diversified both on a stock level and on a sector
level and allocate more to higher priced stocks and
sectors. Moreover, levels of stock and sector con-
centration in MW portfolios can vary significantly
through time.

Previous work has shown that there is a return
premium that results from diversification as first
documented by Booth and Fama (1992) on asset
classes. Fernholz et al. (1998) illustrate this effect
on a stock level and Leclerc et al. (2013) show it

on a sector level. This return premium can be cap-
tured if a portfolio is rebalanced regularly in order
to remain diversified (see, e.g., Willenbrock,
2011; Qian, 2012). Following these authors, we
refer to this return premium as the diversification
return and analyze it in more detail later on.

We show that the relative performance of a
diversified portfolio compared to a passive MW
portfolio depends on changes in market concen-
tration and the portfolio’s diversification return.
If the market becomes more concentrated, this
diminishes or may even overwhelm the port-
folio’s diversification return and the portfolio’s
relative return suffers. However, since the market
cannot concentrate forever and increasing market
concentration is unlikely to dominate the diver-
sification return for long, the diversified strategy
outperforms in the long run.

Moreover, as we will show, the fact that the
market does not concentrate forever implies a
negative relationship between market weights
and subsequent stock returns in the long run.
Strategies that mitigate the link between portfolio
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weights and market weights diminish this nega-
tive relationship and therefore enhance portfolio
returns. This is true even for strategies that appear
to contain no information such as monkeys pick-
ing stocks (see Arnott et al., 2013; Clare et al.,
2013).

The simplest portfolio which is both well-
diversified and mitigates the link between
portfolio weights and market weights is an
equal-weighted (EW) portfolio. Among others,
Bouchey et al. (2012) and Plyakha et al. (2012)
examine the appeal of equal-weighted portfolios.
However, equal stock weights may hamper sec-
tor diversification (e.g. Velvadapu, 2011) and
vice versa. Therefore, achieving both equal stock
weights and equal sector weights would be desir-
able in principle but infeasible. Instead, however,
we can shrink towards equal stock and sector
weights as described in this study.

One issue with EW portfolios is that they exhibit
extreme overweights in tiny stocks or sectors
relative to MW portfolios. This is problematic
because it can severely restrict the capacity of a
strategy if small cap stocks are included in the
investment universe. It may also result in pro-
hibitively high trading costs as extreme positions
in illiquid names need to be established. There-
fore, rather than holding an EW portfolio on a
stock or sector level, we blend equal stock and
sector weights with market weights. This blended
approach allows us to capture the best of both
worlds, namely most of the benefits of EW port-
folios outlined above and similar capacity and
scalability as MW portfolios as well as similarly
low turnover.

We demonstrate that a portfolio constructed in
this manner exhibits a strong and consistent return
premium which is due to its diversification return.
The diversification return is not captured by the
Fama–French–Carhart four-factor model (Fama
and French, 1993; Carhart, 1997) and almost

certainly underlies some of the return premium
that alternative indexing strategies deliver.

We make the following contributions to the
existing literature: (1) We combine stock and
sector-level diversification by shrinking from
market weights towards equal stock and sec-
tor weights simultaneously; (2) We decompose
equal-weighted relative portfolio returns into a
change in market concentration term and a diver-
sification return term; and (3) We demonstrate
that there is a straightforward portfolio construc-
tion methodology that allows us to exploit these
findings in a scalable, low turnover and therefore
easily implementable portfolio.

Our simple diversification strategy is a superior
way of capturing the equity risk premium com-
pared to MW portfolios. It therefore establishes a
tougher benchmark for active fund managers than
MW indices as it results in well-diversified, high-
capacity and low turnover portfolios that can be
delivered very cheaply.

2 Portfolio construction framework

To construct a portfolio, we focus on investors’
three key objectives namely: (1) high returns;
(2) low risk or high diversification; and (3) high
capacity and low trading costs. We illustrate these
three dimensions in the triangle below. A com-
plete and effective investment strategy needs to
incorporate all three of these objectives simulta-
neously.

Portfolios or investment strategies positioned on
the vertices of the triangle below address only one
objective and ignore the two others. For example,
if we ignore expected returns and risk and our
only concern is low trading costs and a highly
scalable portfolio, we would invest in a portfolio
that is maximized for scalability and low turnover
such as a market weighted index (shown as M).
If we only care about higher returns but ignore
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trading costs and risk, we weight stocks by their
expected returns only (shown as r). Finally, if we
only care about risk and ignore return and trading
costs, we should invest in a portfolio that purely
minimizes risk (shown as ���) which corresponds
to the minimum variance portfolio.

Risk
Diversifica on

Capacity 
Liquidity

M Σ

r

Return

The triangle above is a graphical illustration of an
investor’s utility function of the form3

U(w) = w′r − 1

2
λw′�w − 1

2
γw′M−1w

where w is a vector of portfolio weights in each
stock, � is a covariance matrix and M is a square
matrix with market caps along its main diagonal
and zeros elsewhere. As outlined in the Appendix
in more detail, the above utility function has three
terms: (1) an expected return term (w′r), (2) a
risk term (1/2λw′�w) and (3) a trading cost and
capacity term (1/2γw′M−1w). The parameters λ

and γ depend on the investor’s risk and trading
cost aversion.

The above utility function is maximized when the
following holds

w = (λ� + (1 − λ)M−1)−1r (1)

where, without loss of generality, we have set
λ+γ = 1 and 0 ≤ λ ≤ 1. We can derive the MW
portfolio and all the standard alternative indexing
methodologies from this formula.4,5

If an investor only cares about trading costs and
scalability and ignores expected stock returns (in
this case λ is set to zero and we can replace r with

ι, a vector of ones) then Equation (1) becomes Mι

which is simply the MW portfolio.

If an investor does not care about trading costs (in
this case λ is set to 1) then Equation (1) becomes
λ�−1r which is the solution to a standard mean–
variance optimization that only takes expected
return and risk into account and ignores trading
costs. These portfolios would lie on the top left-
hand side of the triangle. By replacing r with
ι (a vector of ones) then Equation (1) becomes
λ�−1ι which is the solution to an unconstrained
minimum variance optimization which lies at the
bottom left vertex of the triangle above. Other
risk-based variants can easily be generated by
modifying the specification of �. For example,
EW strategies are generated using λ�−1ι by set-
ting � to a simple N × N matrix (if N stocks are
in our universe) with N along its main diagonal
and zeros elsewhere.

If the investor does not care about risk but
only about achieving higher returns and scala-
bility (λ = 0), then Equation (1) becomes Mr

which corresponds to a fundamentally weighted
portfolio such as Fundamental IndexingTM. This
relationship has been outlined by Asness (2006).6

In this study we focus on the benefits of (1) reduc-
ing the negative correlation between portfolio
weights and subsequent stock returns which can
be observed for MW portfolios, and (2) improved
diversification compared to an MW portfolio.
We are therefore agnostic about expected asset
returns (r).7 Instead we construct a portfolio with
similar characteristics as an MW index but which
mitigates its drawbacks. We can achieve this by
replacing r with ι (a vector of ones) in Equation (1)
which results in

w = (λ� + (1 − λ)M−1)
−1

ι

The set of portfolios defined by this equation are
located on the lower side of the triangle as return
views are not incorporated.
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This alternative portfolio is a blend of market
weights and a low risk or high diversification
approach. Different candidate portfolio weight-
ing schemes only differ by the investor’s choice
of λ as well as the covariance matrix estimate
�. The question is whether weighting schemes
and covariance specifications exist which retain
the desirable characteristics of market weights but
without suffering from its drawbacks and which
generate higher risk-adjusted returns.

3 Diversification

To construct a more diversified portfolio one
could follow Choueifaty and Coignard (2008)
who estimate a full covariance matrix � from
past stock return data and then tailor their objec-
tive function to maximize diversification. While
this approach is appealing in principle, optimiza-
tion procedures that use estimates of a stock level
covariance matrix on a large universe of stocks
may result in concentrated, high-turnover port-
folios unless they are tightly constrained (see,
for example, Michaud, 1989). In fact, paradoxi-
cally, portfolios that are designed to be optimally
diversified from a historical risk point of view
often have highly concentrated holdings. Impos-
ing tight and often ad-hoc constraints as a remedy,
however, may defeat the purpose of a portfo-
lio optimization. In general, it is well known
that estimating a full covariance matrix robustly
on a stock level can be challenging and always
involves estimation error. In fact, DeMiguel
et al. (2009) find that of 14 sample-based mean–
variance models that they tested on different
out-of-sample datasets none improved upon a
“naïve” equal-weighted (1/N) strategy in terms
of Sharpe ratio and other performance metrics.8

In order to mitigate these issues we propose
a simple and transparent portfolio construction
approach that requires no estimation and which
results in a highly diversified portfolio, both on
an individual stock and on a sector level. Our

approach also generates portfolios with higher
returns than MW indices at lower risk levels and
with similarly low turnover and trading costs. The
resulting diversified portfolio is a blend of MW
and EW portfolios on a stock level and on a sector
level.

To shrink market weights towards equal stock
and sector weights combined, we decompose
the covariance matrix � from Equation (1) and
impose some structure on it.9 We are then able
to choose λ in a way that produces the desired
blend of a highly diversified portfolio (equal stock
and sector weights) and a highly scalable portfolio
(market weights).

To illustrate our methodology, consider a simple
risk model where each stock belongs to one sector
only and sector risk is the only source of system-
atic (or common) risk (V ). All remaining risk is
company specific (�). As a consequence stocks in
different sectors are uncorrelated and sectors are
uncorrelated with each other. We split the covari-
ance matrix � into a component for common
sector risk and another for specific risk

� = a� + bV

where a and b are scalars representing weights
associated with residual and common risk respec-
tively. We assume that there are N stocks in our
universe and K sectors. If S is an N × K matrix
of sector exposures where si,j is 1 if stock i is a
member of sector j and zero otherwise, then V

can be expressed as

V = SFS′

where F is a K × K diagonal sector covariance
matrix. If we also assume that all sectors have the
same risk and we standardize so that the risk of
each sector is 1, then we can simplify this to

V = SS′

where SS′ is an N × N matrix of common sector
exposures where element i, j of SS′ is 1 if stocks
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i and j are both in the same sector and zero
otherwise.

In addition, we assume that specific risk is the
same across stocks and standardize it. Hence �

becomes a diagonal matrix of ones (an identity
matrix I) and the covariance matrix can now be
expressed as

� = aI + bSS′

So instead of Equation (1), we now have

w = (λ(aI + bSS′) + (1 − λ)M−1)−1ι (2)

Equation (2) is a blend of market weights and
equal stock and sector weights. If b is set to zero,
we blend market weights with equal stock weights
only. If a is set to zero, we blend market weights
with equal sector weights only. The choice of λ

depends on an investor’s trade-off between his
aversion to risk vs his aversion to trading costs.

Depending on the choice of parameters a, b and
λ in Equation (2) we are able to combine mar-
ket weights which are very efficient in terms of
trading costs and turnover but tend to be concen-
trated on a stock and sector level with a weighting
scheme that is highly diversified across stocks and
sectors but which leads to higher turnover and
limited capacity. A blend of these two weighting
schemes allows us to achieve a highly effective
combination as we demonstrate in the empirical
analysis below.

An EW portfolio is the least concentrated or most
highly diversified portfolio according to com-
monly used measures of concentration such as the
Herfindahl Index or, more intuitively, its inverse
which gives the effective number of stocks in
a portfolio. For example, at the end of March
2013 the Herfindahl Index for the top 500 stocks
in the US was 0.0069. Its inverse is 145 which
suggests that even ignoring correlations across
stocks, stock-level diversification in an MW port-
folio of the top 500 stocks is much less than the

500 achievable in an EW strategy. As we dis-
cussed above, one appealing feature of an EW
approach is that it mitigates the link between
portfolio weights and market weights and there-
fore diminishes the negative relationship between
market weights and subsequent stock returns. As
a result, returns are enhanced.

Pure EW suffers from a range of drawbacks how-
ever. An EW portfolio is not easily implementable
particularly if the universe includes illiquid small
cap stocks since these would have very high port-
folio weights relative to their market weights
or “weight ratios”. Moreover, maintaining equal
weights over time requires high turnover. There-
fore, we need to balance diversification on the one
hand and implementability, capacity and trading
costs on the other hand.

While diversification is most commonly analyzed
in the context of risk reduction, an additional
benefit of diversification is the return premium it
generates. Following the previous literature, we
refer to this return premium as the diversification
return, which we investigate in more detail below.

3.1 The diversification return

The diversification return was first documented by
Booth and Fama (1992). The authors demonstrate
that a portfolio’s compound return is greater than
the weighted average of the compound returns
of the assets in the portfolio. The incremen-
tal return is due to diversification. While Booth
and Fama focused on diversification across asset
classes, other authors have examined diversifi-
cation returns within asset classes, e.g. Fernholz
(2002), Choueifaty and Coignard (2008), Willen-
brock (2011), Bouchey et al. (2012) or Plyakha
et al. (2012).

Willenbrock (2011) shows that if we define gp and
gi as the geometric average return of the portfolio
and of stock i respectively andwP,i as the portfolio
weight of stock i, then the following relationship
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holds

gP ≈
∑

wP,igi + 1

2

∑
wP,i(σ

2
i − σ2

P)︸ ︷︷ ︸
Diversification return

(3)

where σ2
i and σ2

P are the stock and portfolio vari-
ance, respectively. Hence the second term on
the right-hand side of Equation (3) is the portfo-
lio’s diversification return (DRP). The DRP term
arises because once we have at least two assets
in a portfolio and those assets are not perfectly
correlated, then the portfolio’s performance ben-
efits from the lack of correlation of the returns of
the assets. In this case the diversification return
term is always positive as the portfolio variance
is always lower than the weighted average of the
individual asset variances. The more diversified
a portfolio is, the higher its diversification return
can be expected to be.

3.2 Capturing the diversification return

Only portfolios that rebalance regularly and
thereby remain diversified are able to capture
a diversification return. The magnitude of DRP

increases the more highly diversified a portfo-
lio is. Also, the more frequently a portfolio is
rebalanced, the more of its potential DRp it will
capture.

We derive in Appendix B an expression that
links the returns of two idealized portfolios—an
EW portfolio and an MW portfolio of the same
assets. The return difference between these two
portfolios is

rEW − rMW = − N · cov(wMW,i, ri)

≈ −1

2
dHMW + DREW (4)

The expression −N cov(wMW,i, ri) links market
weights and returns. If market weights are pos-
itively (negatively) correlated with subsequent
returns over some period, then an MW portfolio
will outperform (underperform) an EW portfolio.
If there is no relationship between market weights

and returns, then there should be no difference
in return between an MW portfolio and an EW
portfolio. As Arnott et al. (2013) show, much of
the returns of alternative indexing strategies can
be traced to this simple relationship. Since alter-
native indexing strategies generally weaken the
relationship between portfolio weights and mar-
ket weights, their returns should be closer to an
EW portfolio than an MW portfolio.

However, the second expression in Equation (4) is
more instructive. It says that the return difference
between an EW portfolio and an MW portfolio
has two components—a change in MW portfo-
lio concentration (measured by the change in the
log of the Herfindahl Index of the MW portfolio)
and the diversification return of the EW portfo-
lio. As explained in Appendix B, the DREW term
arises because of the dispersion of returns which is
always positive. However, if big stocks get bigger
still (i.e. there is a positive relationship between
market weights and subsequent returns) then the
concentration of the MW portfolio increases. This
component will negatively impact the return of
an EW portfolio compared to an MW portfolio.
As we will see, in some periods, this effect can
dominate DREW and cause an EW portfolio to
underperform an MW portfolio.

However, the market cannot concentrate forever
and therefore the long-run expected value of
dHMW should be around zero. From Equation (4)
this then implies that the expected excess return of
an EW portfolio over an MW portfolio is DREW,
i.e. the diversification return of the EW portfolio.
Therefore, there is a strong case that more diver-
sified strategies will outperform MW portfolios
in the long run.

4 Data and methodology

We use market data from Factset and Global
Industry Classification Standard (GICS) sector
classifications for the empirical analysis. We
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derive our universe from the S&P Global Broad
Market Index (BMI) constituents in the three main
developed market regions, namely the United
States, Japan and Europe.10 We restrict this uni-
verse to the top 90% of the aggregate free float
adjusted market value in each region (aggregated
by country) in order to exclude potentially illiquid
small and micro-cap stocks. The sample period
used is from January 1992 through the end of
March 2013.

We construct our diversified portfolios based on
Equation (2) and compare them with an MW
index. Portfolios are rebalanced annually at the
end of December.11 We report total returns (with
dividends reinvested) before trading costs in GBP.
We use the broadest GICS classification level
which contains ten sectors in each region.

For the empirical analysis we construct portfo-
lios based on a range of parameters a, b and
λ from Equation (2) to demonstrate the robust-
ness of our approach. As illustrated in Equa-
tion (2), these three parameters determine the
amount of shrinkage towards equal stock and sec-
tor weights. We choose those parameters in a
way to achieve certain levels of total portfolio
shrinkage in percentage terms (TSP) and certain
percentage contributions from stock and sector
shrinkage (PCSStock and PCSSec respectively) to
the total shrinkage as outlined in Appendix C.12

5 Empirical results

5.1 Performance and portfolio characteristics

Exhibit 2 examines performance and portfolio
characteristics for the following parameter com-
binations:

TSP = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00

PCSStock (PCSSec) = 0.00 (1.00) (“Pure Sec-
tor Shrinkage”), 0.50 (0.50) (“50/50 Blend”) and
1.00 (0.00) (“Pure Stock Shrinkage”)

where PCSStock + PCSSec = 1.

Different total shrinkage levels (TSP) are shown
on the horizontal axis of each chart and dif-
ferent stock and sector percentage contributions
(PCSStock and PCSSec respectively) are shown in
different colors. The grey bars show statistics for
an MW portfolio with no shrinkage applied. The
dark blue bars in each chart (labeled “Pure Sec-
tor Shrinkage”) target pure sector level shrinkage
and no stock level shrinkage. So, for example, in
the US, the annual return increases from 10.4%
to 11.4% as we shrink to equal sector weights in
TSP increments of 0.2. Any stock level shrinkage
that arises is purely a result of the sector shrink-
age. The purple bars in each chart (labeled “Pure
Stock Shrinkage”) target pure stock level shrink-
age and no sector level shrinkage. Again, any
sector shrinkage that arises is purely a result of
the stock level shrinkage. The orange bars (“50/50
Blend”) show a blend of equal stock and sector
level shrinkage contributions. The last three bars
in each chart (for TSP = 1.0) show the results
for a fully equal stock-weighted portfolio (“Pure
Stock Shrinkage”), a fully equal sector weighted
portfolio (“Pure Sector Shrinkage”) and for the
50/50 blend with the maximum shrinkage (TSP)
possible.13

Panel A of Exhibit 2 shows performance, risk and
turnover information for the different parameter
combinations we test. Over the sample period
from 1992 to 2013 all our blends outperform mar-
ket weights. The first set of charts show that com-
bining stock and sector shrinkage almost always
generates higher returns than either of the two in
isolation for any given level of TSP. This type of
strategy outperforms an MW index by up to 250
basis points per year depending on how far we are
willing to deviate from market weights. In gen-
eral, returns increase approximately linearly the
more we diversify compared to market weights.

Portfolio risk (shown in the second set of charts
in Panel A) for pure stock shrinkage is generally
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Exhibit 2 Diversified portfolio characteristics (1992–2013).
Panel A: Portfolio performance, risk and turnover

Different total shrinkage levels (TSP) are shown on the horizontal axis of each chart and different stock and sector percentage contributions
(PCSStock and PCSSec respectively) are shown in different colors. The grey bars show statistics for an MW portfolio with no shrinkage
applied. The dark blue bars in each chart (labeled “Pure Sector Shrinkage”) target pure sector level shrinkage and no stock level shrinkage.
The purple bars in each chart (labeled “Pure Stock Shrinkage”) target pure stock level shrinkage and no sector level shrinkage. The
orange bars (“50/50 Blend”) show a blend of equal stock and sector level shrinkage contributions. The last two bars in each chart (for TSP
= 1.0) show the results for a fully equal stock-weighted portfolio (“Pure Stock Shrinkage”) and a fully equal sector-weighted portfolio
(“Pure Sector Shrinkage”).
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Panel A (Continued)

Source: Global Systematic Investors, based on Factset/Standard and Poors data.

similar to an MW portfolio’s risk or higher and as
we shrink all the way to equal stock weights, risk
is always higher than for an MW portfolio. This
pattern may seem surprising as we create more
diversified portfolios which should therefore have
lower risk. However, we also increase exposure
to smaller stocks which tend to be more risky than
larger ones. Moreover, purely shrinking towards
equal stock weights may inhibit diversification
on a sector level as the resulting sector weights
are simply proportional to the number of stocks

in an EW portfolio. In contrast, sector shrink-
age exhibits consistently lower risk levels than
an MW portfolio as does combined stock and
sector shrinkage. For a given level of TSP pure
sector shrinkage generally results in the lowest
risk portfolio across all combinations.

Our diversification strategy does not explicitly
take tracking error into account as we do not
anchor on an MW portfolio but instead aim to
provide a superior alternative. Nevertheless, it
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is instructive to observe the resulting portfolio
tracking error levels relative to an MW index
(shown in the third set of graphs in Panel A).
Tracking errors range between 0.5% and 5.5%
depending how far we deviate from the MW
index. Mostly tracking errors are within the 1.5–
4% range. Hence active risk levels are relatively
modest which emphasizes the fact that our diver-
sified portfolios are not extreme according to
standard measures.

Reward-to-risk ratios (shown in the fourth set
of charts in Panel A) substantially exceed those
of an MW portfolio for all parameter combina-
tions tested. The consistency of this finding over
a range of different TSP and PCSStock shrinkage
levels reinforces its robustness. For a given TSP
level, we can observe that pure sector shrink-
age always outperforms pure stock shrinkage in
terms of risk-adjusted performance. However,
our blend almost always outperforms both of
these more “extreme” options for any given level
of TSP while resulting in more balanced and more
implementable portfolios as we will demonstrate
below.

Information ratios for our diversified portfolios
are shown in the fifth set of graphs in Panel A.
They range from approximately 0 to 0.65. For
a given TSP level information ratios are almost
always highest for our blend which combines
equal stock and equal sector shrinkage. However,
we should point out that our objective in this study
is not to maximize information ratios but to maxi-
mize reward-to-risk ratios while retaining sizable
portfolio capacity and scalability.

Maximum drawdowns (shown in the sixth set of
charts in Panel A) over the entire sample period
are almost always highest for the MW portfolio.
Depending on the region they can sometimes be
lower for stock shrinkage and sometimes for sec-
tor shrinkage, thereby providing further rationale
for combining stock and sector shrinkage which

tends to result in the lowest maximum drawdowns
for any given TSP level.

Annual turnover (shown in the last set of charts in
Panel A) is only slightly higher than for an MW
index, especially for lower TSP levels. In par-
ticular, sector shrinkage exhibits only marginally
higher turnover levels than an MW index. Stock
and sector shrinkage combined leads to turnover
levels that are at most twice the MW turnover.
As expected, shrinking all the way to equal stock
weights leads to considerably higher turnover lev-
els and is therefore more challenging and costly
to implement.

Panel B of Exhibit 2 shows absolute and rela-
tive portfolio concentration measures averaged
over our sample period. The effective number of
stocks and sectors (shown in the first and the sec-
ond set of charts in Panel B) are computed as the
inverse of the Herfindahl Index on a stock and sec-
tor level, respectively. Shrinking at the stock or
sector level in isolation leads to a higher effec-
tive number of stocks or sectors, respectively.
However, increasing only sector-level diversifi-
cation (“Pure Sector Shrinkage”) in fact tends
to result in a slight decrease in the effective
number of stocks and hence a decrease in stock-
level diversification. This scenario arises when
we have large companies in a small sector as, for
example, in the Telecommunications sector. Sim-
ilarly, increasing only stock-level diversification
(“Pure Stock Shrinkage”) can result in a decrease
in the effective number of sectors and hence a
decrease in sector-level diversification. This may
contribute to the increase in risk observed at high
levels of stock shrinkage seen in Panel A. Only
by combining stock and sector shrinkage do we
ensure that portfolios are well diversified on both
levels.

The last set of charts in Panel B show the Rela-
tive Concentration Index (RCI) of each portfolio
which we compute as the portfolio-weighted
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Exhibit 2
Panel B: Portfolio concentration

Different total shrinkage levels (TSP) are shown on the horizontal axis of each chart and different stock and sector percentage contributions
(PCSStock and PCSSec, respectively) are shown in different colors. The grey bars show statistics for an MW portfolio with no shrinkage
applied. The dark blue bars in each chart (labeled “Pure Sector Shrinkage”) target pure sector level shrinkage and no stock level shrinkage.
The purple bars in each chart (labeled “Pure Stock Shrinkage”) target pure stock level shrinkage and no sector level shrinkage. The
orange bars (“50/50 Blend”) show a blend of equal stock and sector level shrinkage contributions. The last two bars in each chart (for TSP
= 1.0) show the results for a fully equal stock-weighted portfolio (“Pure Stock Shrinkage”) and a fully equal sector-weighted portfolio
(“Pure Sector Shrinkage”).

Source: Global Systematic Investors, based on Factset/Standard and Poors data.

average of its stock weights relative to mar-
ket weights. Relative concentration is a measure
of investment capacity and portfolio scalabil-
ity. An MW portfolio has the highest achievable

investment capacity and therefore the lowest rel-
ative concentration (RCI = 1). A higher relative
concentration level (for example RCI = 2) means
that a portfolio has lower investment capacity than
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market weights (in this case half the investment
capacity). Exhibit 2 shows that the investment
capacity of our diversified portfolios is gener-
ally very high. The relative concentration index is
mostly well below two and only increases more
strongly once we move all the way to equal stock
or sector weights.

Hence, thus far we can conclude the following:
(1) Both stock and sector shrinkage deliver bet-
ter performance than market weights. However,
combining the two components maximizes the
benefit and consistently generates higher returns
than market weights at lower risk. (2) Reward-to-
risk ratios generally increase the further we diver-
sify relative to market weights while turnover
only increases marginally unless we move all the
way to equal stock weights. (3) Diversification is
increased both on a stock level and on a sector
level. (4) The investment capacity of the strategy
is extremely high, at least half the capacity of MW
indices.

As a result, our simple blended approach between
market weights and equal stock and sector
weights appears to retain the desirable character-
istics of a truly passive portfolio but improves
performance. The enhanced performance results
from better diversification and its associated
higher diversification return. The resulting portfo-
lios have low turnover, high capacity and liquidity
and generate an annualized outperformance of up
to 250 basis points from 1992–2013.

5.2 Integrated model—relative return
decomposition

As we have seen above, an integrated model
which shrinks market weights towards both equal
stock and sector weights delivers the strongest
performance. In order to investigate the sources
of outperformance of this type of diversified port-
folio over market weights in more detail, we focus

on a portfolio that targets equal percentage contri-
butions to total shrinkage from a stock level and
from a sector level (PCSStock = PCSSec = 0.50).
We examine two different total shrinkage lev-
els for this portfolio, namely TSP = 0.60 and
TSP = 0.80. Which level of TSP to choose ulti-
mately depends on an investor’s preferences. In
the following we call the resulting portfolios “the
diversified portfolios”.

Exhibit 3 compares diversified portfolio returns
with MW returns and illustrates how relative
returns co-move with market concentration lev-
els. The first set of graphs in Exhibit 3 shows
cumulative returns of each of the diversified port-
folios and the MW portfolio (denoted rP,0.5,0.6,
rP,0.5,0.8 and rMW, respectively). The second
set of graphs shows cumulative residual returns
resulting from a time series regression of diver-
sified portfolio returns regressed on an intercept
and on market returns (denoted αP,0.5,0.6 and
αP,0.5,0.8, respectively).13 As a result, the resid-
ual returns are adjusted for the market risk of
each portfolio. We can observe that the diversi-
fied portfolios consistently outperformed the MW
portfolio with the exception of the tech boom
around the end of the 1990s, particularly in the
US.

The third set of graphs in Exhibit 3 shows the MW
portfolio’s Herfindahl Index, i.e. its concentration
level, both on a stock level (HMW) and on a sector
level (HMW,Sec).14

We can observe that during the technology boom
around the end of the 1990s market concentration
on a stock level increased substantially in the US
and in Europe. In the US, sector level concen-
tration increased strongly at the same time as the
technology sector boomed. During this period the
increase in market concentration dominated the
diversification return. Hence the diversified port-
folios underperformed the MW portfolio. Once
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Exhibit 3 Diversified portfolios vs market weighted index—Relative return decomposition (1992–2013).

The first set of graphs shows cumulative returns of each of the diversified portfolios and the MW portfolio (denoted rP,0.5,0.6, rP,0.5,0.8
and rMW, respectively). The second set of graphs shows cumulative residual returns resulting from a time series regression of diversified
portfolio returns regressed on an intercept and on market returns (denoted αP,0.5,0.6 and αP,0.5,0.8, respectively). The third set of graphs
shows the MW portfolio’s Herfindahl Index, i.e. its concentration level, both on a stock level (HMW) and on a sector level (HMW,Sec).
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the tech boom burst in 2000, market concentration
levels fell again. As a result the diversified port-
folios were able to capture their diversification
returns and generated positive relative returns.

It is also interesting to observe that while some-
times stock and sector concentration levels move
together (such as during the tech boom in the US),
they move in opposite directions at other times.
This provides further justification for combining
individual stock shrinkage with sector shrinkage

as the two components have the potential to diver-
sify each other, thereby generating a smoother
relative return series.

In order to test our (approximate) decomposi-
tion of relative returns from Equation (4) more
formally, we also run the following time series
regression models15:

Model 1: rP = α + βrM + ε

Model 2: Model 1 + γdHMW

Model 3: Model 1 + δ[−0.5dHMW + DREW]
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Model 4: Model 1 + δSec[−0.5dHMW,Sec +
DREW,Sec]

Model 5: Model 1 + θSMBSMB + θHMLHML +
θMOMMOM

Model 6: Model 3 + Model 5

Model 1 is a market model where we regress
diversified portfolio returns on market returns
only. Model 2 adds the change in the MW portfo-
lio concentration term (dHMW) from Equation (4)
to Model 1. Model 3 adds the entire decomposi-
tion term from Equation (4) to Model 1. Model
4 adds the same term measured on a sector level
to Model 1. Model 5 is simply the well-known
Fama–French–Carhart four-factor model (the
market, SMB, HML and momentum (MOM)) for
comparison.16 Model 6 combines Models 3 and
5 in order to examine whether our relative return
components remain statistically significant over
and above the widely used four-factor model.

We measure the diversification return (DRP from
Equation (3)) at time t as follows:

DRP = 1

2

∑
wP,i(σ

2
i − σ2

P)

≈ 1

2

∑
wP,i(r

2
i − r2

P)

Hence we replace the more conventional time
series estimates of σ2

i and σ2
P with their cross-

sectional estimates which are more timely mea-
sures of risk that change every period (as shown
by Yu and Sharaiha, 2007) as well as several
other studies). This relationship also demon-
strates that the diversification return (DRP) is
equal to approximately half the cross-sectional
return dispersion of the stocks included in a
portfolio.

The regression results are shown in Exhibit 4 for
our three regions. For each regression model and
each regression coefficient estimate we show the
results for each of our two diversified portfolios

which only differ by TSP (TSP = 0.6 is shown
first and then TSP = 0.8). T -statistics are shown
in parentheses. The market model results (Model
1) indicate that in each region the diversified
portfolios generate statistically significant out-
performance after controlling for market move-
ments. The intercept coefficients α are all positive
and almost all are highly statistically signifi-
cant. At the same time the diversified portfolios
exhibit market betas that are significantly below
one in each region indicating that their market
risk is lower than for an MW portfolio. Annu-
alizing the α coefficient estimates leads to a
market risk-adjusted outperformance of approx-
imately 100–200 basis points for all regions
depending on the total shrinkage level (TSP)
chosen.

Adding the change in market portfolio concen-
tration term (dHMW) to Model 1 (Model 2)
increases the α coefficients substantially. Depend-
ing on the region and on TSP the annualized α

increase ranges between 35 and 135 basis points.
As expected from Equation (4), the regression
coefficients on the newly added term are always
negative and highly statistically significant. In
line with our illustration from above, the rela-
tive portfolio returns increase when we condition
them on the change in market concentration. As
expected, the loading on dHMW always increases
in absolute magnitude for higher TSP.

When we add our relative return decomposition
term from Equation (4) (Model 3), this term can
be seen to be positive and highly statistically sig-
nificant in all regions as expected. Again, the
regression coefficient increases in magnitude as
we move to a higher level of TSP as expected. The
diversified portfolios suffer in relative terms if the
market becomes more concentrated as stocks with
higher market weights exhibit relatively higher
returns than those with lower weights. As the
diversified portfolios are underweight the former
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and overweight the latter relative to the MW
portfolio, their relative returns are negatively
associated with changes in market concentration.
However, changing market concentration levels
are more than offset over time by the diversifica-
tion return which is always positive. Moreover,
we can observe that once our −0.5dHMW +
DREW term is included in the model, the regres-
sion intercept α loses its statistical significance in
the United States and Japan although it remains
positive and significant in Europe.

Model 4 adds our decomposition term measured
on a sector level instead of a stock level to
Model 1. Just as for the stock level term in Model
3 we can observe that the sector level term is
highly statistically significant and increases with
TSP. Interestingly, the market beta of the portfolio
increases substantially in all regions if we include
a sector level term instead of a stock-level term.

Model 5 shows a standard four-factor model (the
market, size (SMB), value (HML) and momen-
tum (MOM)). It is interesting to observe that all
regression intercepts (α) remain positive and sta-
tistically significant in all three regions (except
for Japan where α is positive but not statistically
significant at lower TSP levels). This indicates
that our simple diversification procedure tends to
generate significantly positive returns even after
controlling for a four-factor model. Moreover, we
can observe that the adjusted R2 of Model 4 is
almost always higher than for Model 5.

Model 6 combines Models 2 and 5. We can
observe that once we add the four-factor model
to Model 2 our relative return decomposition
term remains highly statistically significant. In
fact, its statistical significance remains almost
unchanged. In other words, it is not subsumed
by a standard four-factor model. One puzzling
finding is that the regression intercept (α) in
Europe remains highly statistically significant

across almost all model versions tested. A pos-
sible reason might be that we are inadvertently
exploiting a country or currency effect which is
not incorporated into our model. This is a possi-
bility since Europe is the only multi-country and
multi-currency region in our data sample.

5.3 Diversified portfolio characteristics

We have demonstrated that the diversified port-
folios consistently outperform an MW index over
our sample period. We have also been able to show
that the diversified portfolios’ relative returns can
be decomposed into an MW return term as well
as the change in MW portfolio concentration and
the portfolios’ diversification return.

To obtain a better understanding of the nature
of the diversified portfolios that we propose and
in order to evaluate their implementability and
scalability in practice, we examine a snapshot
of our two diversified portfolios at the end of
our sample period (31 March 2013). The port-
folio characteristics we examine are summarized
in Exhibit 5.17 We show average market values,
accounting ratios as well as portfolio concentra-
tion proxies on a stock and sector level for each
of the three regions we examine.

While average market caps are lower for the diver-
sified portfolios than for the MW portfolio all
averages are well within a large cap range as
they vary between about £7 and £35 billion across
regions and levels of TSP which compares to £17
and £48 billion for market weights. Book/market
ratios as well as dividend yields of the diversified
portfolios tend to be similar to the MW port-
folio. The diversified portfolios do not exhibit
any consistent value or growth tilt compared to
market weights. Over our entire sample period
we observe from Exhibit 4, however, that there
is a significant loading on HML in the regres-
sions in the US and Japan which indicates a
value tilt. Earnings yields tend to be lower for
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Exhibit 5 Diversified portfolio characteristics (as of 31 March 2013).
The table above shows portfolio characteristics of the diversified portfolios (PCSStock = PCSSec = 0.50 and TSP = 0.60 (first value)

and 0.80 (second value)) and an MW portfolio for the three regions we examine.

United States Japan Europe

Diversified Market Diversified Market Diversified Market
Characteristics portfolio weights portfolio weights portfolio weights

Number of securities 732 771 444 461 507 528
Weighted average Mkt Cap 35,264 48,439 11,090 17,329 27,922 38,204

(million £) 25,841 7,106 21,050

Weighted average book/market 0.40 0.41 0.86 0.84 0.63 0.64
0.41 0.90 0.62

Weighted average dividend yield (%) 1.82 1.80 2.10 2.05 3.78 3.71
1.80 2.11 3.78

Weighted average earnings yield (%) 5.15 5.45 2.77 3.78 6.03 6.32
4.84 1.72 5.49

Aggregate Top-10 stock weight (%) 8.8 13.5 12.3 21.4 12.0 19.8
6.2 10.3 8.6

Aggregate Top-3 sector weight (%) 38.0 46.3 48.2 61.6 38.8 47.5
34.7 40.5 35.3

Source: Global Systematic Investors, based on Factset/Standard and Poors data.

the diversified portfolios than for the MW port-
folio. Over our entire sample period (not shown),
however, the diversified portfolio mitigates some
of the well-known growth bias inherent to mar-
ket weights, which benefits diversified portfolio
returns to some degree.

By design the largest stock weights are likely to be
lower for the diversified portfolios than for MW
indices. This pattern is reflected in the aggregate
top-10 stock weights shown and holds in all three
regions. By construction, this pattern is strongest
for higher TSP levels. For TSP = 0.8 aggregate
top-10 portfolio stock weights are less than half
the aggregate top-10 market weights in all three
regions.

As we blend market weights with equal sec-
tor weights in addition to equal stock weights,
our diversified portfolios exhibit more balanced

sector allocations than market weights. Sec-
tors with below-average market weights tend to
have their weights increased and sectors with
above-average market weights tend to be reduced,
though not uniformly since we shrink towards
equal stock weights at the same time. This pattern
is reflected in the aggregate top-3 sector weights
that we show below for the MW portfolio as
well as the diversified portfolios. For example,
for TSP = 0.8 the aggregate top-3 portfolio sec-
tor weights are only about three-quarters of the
aggregate top-3 sector market weights.

We have seen in Exhibit 2 that the proposed
diversified portfolio versions (PCSStock = 0.50
and TSP = 0.60 or 0.80) outperformed an MW
index by approximately 90–200 basis points
per annum while their annual turnover is only
about 2–7 percentage points higher. A simple
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back-of-the envelope calculation demonstrates
that the per-trade transaction cost (roughly speak-
ing commission, bid–ask spread and market
impact) would have to be unrealistically high in
order to offset the return benefit of the diversi-
fied portfolio vs an MW index. It is important
to remember that the diversified portfolio’s aver-
age market cap, although lower than for an MW
index, is mostly in the double-digit billions and
we have excluded small cap stocks (the bottom
10% of the aggregate market capitalization) from
our universe which constitute the least liquid mar-
ket segment. As a result, we can safely dismiss the
possibility that the return advantage will be elim-
inated by transaction costs or that it is attributable
to a micro-cap effect.

5.4 Potential extensions

Our diversified portfolio can either be invested
in directly or it can be used as a base portfolio
for a factor overlay. In other words, one could
overweight and underweight stocks relative to
the diversified portfolio based on factors such as
value, momentum and low risk. Using the diversi-
fied portfolio instead of an MW portfolio as a base
portfolio delivers an expected return premium in
addition to any potential factor premium. More-
over, it distorts factor exposures less than an MW
portfolio and allows factor premia to be captured
in a more balanced way than an MW portfolio
due to its better diversification. Furthermore, fac-
tor effects are often weaker in large and mega-cap
stocks and stronger in a mid and small cap uni-
verse. Anchoring factor bets on market weights is
therefore likely to be suboptimal.

Another interesting area of research would be to
link our diversified portfolio to mutual fund per-
formance. Petajisto (2013) has shown that the
most active stock pickers (those with the highest
“active share”) tend to have the best perfor-
mance and that cross-sectional dispersion in stock
returns positively predicts performance by stock

pickers. As the diversification return discussed
above can be measured using cross-sectional dis-
persion in stock returns, there is a direct link
between this relative return component and the
observed return of active stock pickers. The ques-
tion arises how much of their realized relative
returns can be explained (and therefore captured)
by our diversified strategy in a scalable and low
turnover manner and at a very low cost.

6 Conclusion

We have presented a simple portfolio construc-
tion approach which is a blend of market weights
and equal stock and sector weights. Our approach
results in a highly diversified portfolio both on a
stock level and on a sector level and generates
higher portfolio returns at lower risk than an MW
index. The higher returns of our diversified port-
folio originate both from mitigating the link with
market weights and from its higher diversification
return which we are able to capture because we
rebalance our portfolio on a regular basis.

Our diversified portfolio exhibits only slightly
higher turnover than an MW index and is less con-
centrated in mega-cap stocks. Instead, it assigns
somewhat higher weight to smaller stocks and
sectors than an MW index. At the same time the
diversified portfolio retains the characteristics of a
broad market index and is therefore highly imple-
mentable and has very high investment capacity.

We make the following contributions to the
existing literature: (1) We combine stock and
sector-level diversification by shrinking towards
equal stock and sector weights simultaneously;
(2) We decompose equal-weighted relative port-
folio returns into a change in market concentration
term and a diversification return term; and (3) We
demonstrate that there is a straightforward port-
folio construction methodology that allows us to
exploit these findings in a scalable, low turnover
and therefore easily implementable portfolio.
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Our simple diversification strategy appears to
be a superior way of capturing the equity risk
premium compared to an MW portfolio. It there-
fore establishes a tougher benchmark for active
fund managers than MW indices as it results in
well-diversified, high-capacity and low turnover
portfolios that can be delivered very cheaply.
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Appendices

A. Derivation of utility function

In its most general form, an investor’s utility
function is usually expressed as follows:

U(w) = w′r − 1

2
λw′�w − TC(w − w0) (A1)

where TC(w − w) represents trading costs as a
function of the change in the weights from w0,
the starting asset weights, to w, the new opti-
mal weights. This specification is an improvement
on the trading cost free optimization but intro-
duces the issue that trading costs will likely differ
for different portfolios. Large portfolios require
larger trades to rebalance and therefore tend to
incur larger trading costs. Smaller portfolios may
be affected by minimum trade sizes and ticket
charges. Each portfolio will have a different set
of starting weights w0 and this will influence
the amount of trading needed to rebalance each
portfolio. The portfolio-specific nature of trading
costs is undesirable for our purposes as we wish
to model a single model or target portfolio for all
portfolios following the same strategy.

Asimple proxy for trading costs, particularly mar-
ket impact costs, is to use the desired portfolio
weight in a stock and divide it by its market

weight.18 This ratio corresponds to the Tradesize
variable of Keim and Madhavan (1997) which has
been shown to be one of the strongest predictors
of trading costs.19

The statistic we focus on is therefore wP,i/wMW,i

where wP,i is the desired weight of stock i in the
portfolio and wMW,i is the market weight of stock
i. Summing these relative weights across the port-
folio and weighting them by stock weights wP,i

this becomes

RCI =
N∑

i=1

wP,i ∗
(

wP,i

wMW,i

)
(A2)

This expression is also suggested by Vangelisti
(2006) who calls it portfolio concentration. We
prefer to call it the Relative Concentration Index
(RCI) of a portfolio to distinguish this type of
concentration from absolute concentration which
is typically a function of the sum of the squares
of the portfolio weights or, equivalently, the
Herfindahl Index which is a diversification proxy
rather than a trading cost proxy.

In matrix format, RCI in Equation (A2) can be
expressed as w′M−1w. Here, M−1 is a diagonal
square matrix where each element along the diag-
onal is one divided by the market cap of stock i

and the off-diagonal elements are zero. If we add
a term, γ , to capture the investor’s aversion to
trading costs we get γw′M−1w.

Using this term as our proxy for trading costs
gives

U(w) = w′r − 1

2
λw′�w − 1

2
γw′M−1w. (A3)

B. Equal weighted vs market weighted
portfolio returns

The portfolio return rP can be decomposed as
follows:

rP = E(ri) + N · cov(wP,i, ri) (B1)
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This relationship can be derived as follows:

rP =
N∑

i=1

wP,iri

= N · E(wP,iri)

= N · E(wP,i) · E(ri) + N · cov(wP,i, ri)

= E(ri) + N cov(wP,i, ri)

which follows from the definition of covari-
ance, namely cov(x, y) = E(xy) − E(x)E(y) for
variables x and y.

Now, let rMW and rEW be the MW portfolio return
and the EW portfolio return of the same assets.

From Equation (B1) and the fact that for an
EW portfolio cov(wP,i, ri) = 0 by construction
(hence rEW = E(ri)), we can derive

rEW − rMW = −N cov(wMW,iri) (B2)

Therefore the difference in return between EW
and MW of the same assets is determined by the
degree to which asset returns covary with market
weights.

Therefore, if returns have a positive (negative)
correlation with market weights, MW will have a
higher (lower) return than EW.

Evolving weights

We now look at the way that weights evolve
in MW. For the sake of simplicity we assume
that stocks pay no dividends and we ignore new
issuance or companies entering or leaving the
market. Therefore in MW, stock weights drift
exactly in relation to their relative returns. It is
easier to represent this using the natural logarithm
(log) of weights and logarithmic returns (upper
case W and R). Thus

WMW,i,t+1 = WMW,i,t + Ri,t − RMW,t

So the log weight of an asset in MW at t + 1 is
exactly equal to the previous log weight of the

asset plus the difference in the log returns of the
asset and the MW portfolio. If we then calculate
the cross-sectional variance (denoted by D2 (…)
for the square of the cross-sectional dispersion D

(…)) of the log weights at times t and t + 1 we
have

D2(WMW,i,t+1) = D2(WMW,i,t + Ri,t − RMW,t)

Since RMW,t is a constant, this is just

D2(WMW,i,t+1) = D2(WMW,i,t + Ri,t)

which expands to

D2(WMW,i,t+1) = D2(WMW,i,t) + D2(Ri,t)

+ 2cov(WMW,i,t, Ri,t)

(B3)

where D2(Ri,t) is the cross-sectional variance of
log returns and cov(WMW,i,t, Ri,t) is the cross-
sectional covariance of log market weights and
log returns.

Rearranging we have

cov(WMW,i,t, Ri,t) = 1

2
(D2(WMW,i,t+1)

− D2(WMW,i,t)

− D2(Ri,t))

Using the above and with some further alge-
bra, we can approximate the covariance term in
Equation (B2) as

−N cov(wMW,i,t, Ri,t) ≈ −1

2
(D2(WMW,i,t+1)

− D2(WMW,i,t)

− D2(Ri,t)) (B4)

We can break down the right-hand side of Equa-
tion (B4) into two components.

The first two terms in the brackets on the right-
hand side relate to the change in the cross-
sectional variance of the log weights. A useful
way to represent this is to change it so that it uses
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a simple measure of diversification. The Herfind-
ahl Index of a portfolio is the sum of the square
of the (arithmetic) weights of the assets in the
portfolio.

Hp =
∑

w2
P,i

We can show that

D2(Wi,t+1) − D2(Wi,t)

= ln(Hp,t+1) − ln(Hp,t)

So the change in the cross-sectional variance in
the log weights of a portfolio is the same as the
change in the log of the Herfindahl Index of the
portfolio which we could represent as simply
dHp.

The second part of the right-hand side of Equa-
tion (B4) is 1

2(D2(Ri,t)).

This is the diversification return of EW as
described in Equation (3). We can now modify
Equation (B3) to be

−N cov(wMW,i,t, Ri,t) ≈ −1

2
dHMW + DREW

(B5)

In other words, Equation (B5) means that the
return difference between EW and MW, which is
−N cov(wMW,i,t, ri,t), is related to the negative
of the change in the log of the Herfindahl Index
of MW plus the diversification return of EW. In
general, HMW is observed to be a mean reverting
statistic and therefore the long-run expected value
of the change in H, i.e. E(dHMW), is zero. If this
is the case, then we can infer that the expected
excess return of EW over MW is the expected
diversification return of EW, i.e. DREW. If MW
concentrates and HMW increases, then if dH is
greater than DREW, this will lead to an under-
performance of EW vs MW. However, DREW is
always positive and so eventually EW will outper-
form MW under any plausible scenario that does
not involve the market concentrating excessively
in a single stock or sector.

C. Shrinkage

We choose the parameters a and λ from Equa-
tion (2) in a way to achieve certain levels of
total portfolio shrinkage (TSP) and certain per-
centage contributions to the total shrinkage from
stock and sector shrinkage (PCSStock and PCSSec,

respectively).20 From Equation (2) we have

� = aI + bSS′

This term splits total stock return variability into
a stock and a sector component. Moving to a
portfolio level we can rewrite this as

TSSP = w′
P�wP

= awP
′IwP + bwP

′SS′wP

= aHP + bHP,Sec

where TSSP is the total sum of squares, HP and
HP,Sec are the stock and sector level Herfindahl
Indices respectively of portfolio P. As a result,
the total portfolio shrinkage away from market
weights towards equal stock and sector weights
can be expressed as

TSSMW − TSSP = a(HMW − HP)

+ b(HMW,Sec − HP,Sec)

= a�HP + b�HP,Sec

This term can be broken down into the stock
level and sector level percentage contributions
(PCSStock and PCSSec) to the total portfolio
shrinkage (PCSStock and PCSSec, respectively)
where

PCSStock = a�HP

a�HP + b�HP,Sec
and

PCSSec = b�HP,Sec

a�HP + b�HP,Sec

Hence, PCSStock + PCSSec = 1. Expressing the
total portfolio shrinkage in percentage terms and
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denoting it by TSP, we get

TSP = TSSMW − TSSP

TSSMW − TSSEW

= a�HP + b�HP,Sec

a�HEW + b�HEW,Sec

Hence TSP is the total percentage amount of
shrinkage in a portfolio away from market
weights and towards equal stock and sector
weights expressed as a proportion of the total pos-
sible shrinkage. PCSStock and PCSSec break up
this total shrinkage amount into percentage con-
tributions from the stock and sector components.

Notes
1 See, for example, Black et al. (1973), Fama and French

(1992), Baker et al. (2011), Clare et al. (2013) or Arnott
et al. (2013).

2 A recent article in the Economist illustrates this issue
(http://www.economist.com/news/briefing/21586558-
american-private-enterprise-dominates-corporate-pre-
mier-league-again-thanks-waning).

3 See Appendix A for a derivation of this expression.
4 In order to scale M−1 appropriately, we can divide all

elements in M−1 (where the elements along the diagonal
are the reciprocals of stocks’ market weights) by their
cross-sectional average.

5 For an overview of different alternative indexing strate-
gies see, for example, Chow et al. (2011) or Lee
(2011).

6 Asness (2006) demonstrates that Fundamental
IndexingTM simply overweights stocks that have a
higher valuation ratio relative to the valuation ratio of
the aggregate market and underweights them otherwise.
Market weights remain the “neutral” reference portfo-
lio. As a consequence, Fundamental IndexingTM would
be located on the right-hand side of the above trian-
gle. To see this, let Fi be some fundamental such as a
stock’s total dividend and Mi be its market cap. We can
weight a stock relative to its market weight based on
its relative dividend yield yi/yMW, i.e. the yield of the
stock divided by the yield of the market. Thus we get
wP,i = wMW,i × yi

yMW
= (

Mi∑
Mi

)× ( Fi/Mi∑
Fi/

∑
Mi

)
, where

wP,i is the portfolio weight and wMW,i is the market
weight. This simply solves to Fi/

∑
Fi which is the

fundamentally weighted position.

7 We will explore the combination of diversification with
return expectations in future research.

8 DeMiguel et al. use EW as a naïve benchmark for their
mean–variance strategies. In fact, as our subsequent dis-
cussion on the diversification return demonstrates, EW
may not be so naïve after all—a finding which is likely
to have implications for their results.

9 Our approach can easily be extended to countries. Both
sector and country effects have been shown to be major
determinants of individual stock and portfolio risk and
are included in commercial risk models.

10 As Europe consists of multiple countries, this gives rise
to country effects in addition to sector effects. To keep
our analysis simple we ignore country effects. Country
effects could, however, be incorporated into our portfo-
lio construction framework in exactly the same way as
sector effects.

11 The empirical results are not sensitive to the calendar
month chosen for rebalancing. Annual as opposed to
more frequent rebalancing lowers portfolio turnover and
hence trading costs. It also allows us to avoid induc-
ing a negative exposure to the momentum effect (see
Jegadeesh and Titman, 1993) since, for example, an
EW portfolio constantly reduces positions in stocks that
have drifted up vs the market and vice versa.

12 This can be achieved using a simple numerical optimiza-
tion routine. The computational details for TSP as well
as PCSStock and PCSSec are shown in Appendix C.

13 For the 50/50 blend TSP= 1.0 is infeasible. However,
we shrink the 50/50 blend towards equal stock and
sector weights as much as possible. We are able to
achieve the following average total shrinkage (TSP) lev-
els over time for our 50/50 blends: United States = 0.93,
Japan = 0.86, Europe = 0.91.

14 Returns shown are computed as the sum of the regres-
sion intercept and the residual return series and then
cumulated over time.

15 We multiply the Herfindahl Index by the number of
stocks (sectors) in the portfolio as the magnitude of the
Herfindahl Index would otherwise not be comparable
over time whenever the number of stocks (sectors) in
the investment universe changes.

16 Note that although Equation (4) refers to fully
equal-weighted portfolios, we expect our diversified
portfolios which are blends between market weights and
equal stock and sector weights to be strongly exposed to
the relative return components shown in Equation (4).

17 The factor returns for SMB, HML and MOM have been
obtained from Ken French’s Web site: (http://mba.tuck.
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dartmouth.edu/pages/faculty/ken.french/data_library.
html).

18 Our diversified portfolios compare similarly to MW
indices for earlier snapshots which are not shown here
to save space.

19 Note that we focus on market impact costs rather than
bid–ask spreads as the former tend to dominate trading
costs for larger trades.

20 While Keim and Madhavan focus on trades (changes
in w) we focus on the level of w as it represents the
summation of changes over time.

21 This can be achieved using a simple numerical optimiza-
tion routine.
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